Some remarks on b-(E.A)-property in b-metric spaces
نویسندگان
چکیده
منابع مشابه
Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کاملSome topological properties of fuzzy strong b-metric spaces
In this study, we investigate topological properties of fuzzy strong b-metric spaces defined in [13]. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_{1}times X_{2}$ is a complete fuzzy strong b-metric space if and only if $X_{1}$ and $X_{2}$ are complete fu...
متن کاملSome remarks about metric spaces
Of course various kinds of metric spaces arise in various contexts and are viewed in various ways. In this brief survey we hope to give some modest indications of this. In particular, we shall try to describe some basic examples which can be of interest. For the record, by a metric space we mean a nonempty set M together with a distance function d(x, y), which is a real-valued function on M ×M ...
متن کاملSome notes on ``Common fixed point of two $R$-weakly commuting mappings in $b$-metric spaces"
Very recently, Kuman et al. [P. Kumam, W. Sintunavarat, S. Sedghi, and N. Shobkolaei. Common Fixed Point of Two $R$-Weakly Commuting Mappings in $b$-Metric Spaces. Journal of Function Spaces, Volume 2015, Article ID 350840, 5 pages] obtained some interesting common fixed point results for two mappings satisfying generalized contractive condition in $b$-metric space without the assumption of the...
متن کاملSome remarks about curves in metric spaces
and when this happens we say that d(x, y) is an ultrametric. One can check that an ultrametric space is totally disconnected, which is to say that it does not contain a connected subset with more than two elements. Let us say that a subset E of a metric space (M, d(x, y)) is chain connected if for every pair of points u, v ∈ E and every ǫ > 0 there is a finite chain w1, . . . , wl of points in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SpringerPlus
سال: 2016
ISSN: 2193-1801
DOI: 10.1186/s40064-016-2163-z